Review of the NSCAT GMF in Ku-band Scatterometer Wind Retrieval

Zhixiong Wang¹, Ad Stoffelen², Anton Verhoef², Wenming Lin¹, Juhong Zou³ ¹Nanjing University of Information Science & Technology ²Royal Netherlands Meteorological Institute ³National Satellite Ocean Application Service

Methodology

- During the wind retrieval process, we first find the "best-matched" wind speed for each potential wind direction. Subsequently, we perform wind direction ambiguity removal to select the "optimal" wind direction for each WVC.
- Once the wind direction is established for a WVC, we then examine the corresponding "best-matched" wind speed values obtained from each individual View.
- The differences between the View-specific and the WVC wind speed provide valuable insights into the consistency of measurements across different Views.

Ku-band ADEOS-1/NSCAT scatterometer winds

CDF Matching $\rightarrow \Delta V$ for GMF

Ku-band ADEOS-1/NSCAT scatterometer winds

CDF Matching $\rightarrow \Delta V$ for GMF

Ku-band ADEOS-1/NSCAT scatterometer winds

High ratio of negative Sigma0 at sidelobe,

Thus we limit the antenna azimuth for each beam

SST Effects on Ku-band ADEOS-1/NSCAT scatterometer winds $y = 1 + bx + cx^2, x = SST - 12.5$

Sea Surface Temperature (° C)

Wind speed (m/s)

SST effects on Ku-band sigma0 measurements, for the cases of CFOSAT/SCA and FY-3E/WindRAD

We did not see clear SST effects on CFOSAT/SCA Ku-HH sigma0 measurements!

Furthermore, SST effects on
 CFOSAT/SCA Ku-VV sigma0
 data is markedly weaker than
 expected.

FY-3E/WindRAD-Ku 37.00 ~ 38.00 deg 38.00 ~ 39.00 deg 39.00 ~ 40.00 deg 40.00 ~ 41.00 deg — 41.00 ~ 42.00 deg HH 16 12 24 32 8 20 28 36 4 Sea Surface Temperature (°C) 37.00 ~ 38.00 deg 38.00 ~ 39.00 deg 39.00 ~ 40.00 deg 40.00 ~ 41.00 deg 41.00 ~ 42.00 deg $\mathbf{W}\mathbf{V}$

4

8

12

16

Sea Surface Temperature (°C)

20

24

28

32

36

SST Effects from physics-based on

Kudryavtsev curvature spectrum for wind speed at 5 and 7 m/s, SST = 0, 15, and 30 °C in the upwind wind direction. The areas referring to 7 m/s winds are shaded to highlight the nonlinear changes between SST from 30 to 15 °C and 15 to 0 °C.

p

U

q

Sea surface winds retrieval from the FY-3E/WindRAD

Cal/Val of WindRAD sigma0 data NOC results < band, pol, inc., ant. >

300

330 360

360

> 2.3 Error characteristics of WindRAD wind products (old version)

Cal/Val of WindRAD sigma0 data

Ku-HH, s0 = s0 - 0.00001*i

Cal/Val of WindRAD sigma0 data

C-HH, s0 = s0 +[0.001+ $(\theta - 37)$ *0.0002)*Random

C-VV, s0 = s0 + 0.0018*Random

Adapt GMFs to further improve consistencies among four beams

New WindRAD winds

Quality Control (QC) of WindRAD winds: Rain effects

Quality Control (QC) of WindRAD winds

Summary

- At very low wind speeds (<2 m/s), there is a clear discrepancy between measured and simulated sigma0 values. This may be related to the internal calibration of scatterometer data, i.e., noise subtraction. Is it feasible to develop an open-source L1B processor capable of handling data from all spaceborne scatterometers?
- ◆ Further refinement of the incidence angle and wind speed dependencies is needed for NSCATseries GMF.
- Incidence angle dependence of SST effects on Ku-band sigma0 measurements needs further study.
- WRAD provides good opportunity to study rain effects on C and Ku band sigma0 measurements and retrieved winds.

Extra slides

2.1 C-HH GMF for WindRAD wind retrievals

Procedure of building GMF for C-band HH:

Eq.
$$z_p(\theta, V, \phi) = B_0^p(\theta, V) \left[1 + B_1^p(\theta, V) * \cos(\phi) + B_2^p(\theta, V) * \cos(2\phi) \right]$$
(1): Wind direction
Wind speed dependency

Eq.
$$z = (\sigma^0)^{0.625}$$

(2): $Z = (\sigma^0)^{0.625}$
Eq. $PR = \frac{\sigma_{VV}^0}{\sigma_{HH}^0} = \frac{B_0^{VV}(\theta, V)}{B_0^{HH}(\theta, V)}$

$$z = \left(B_0^p(\theta, V)\left[1 + B_1^p(\theta, V) * \cos(\phi) + B_2^p(\theta, V) * \cos(2\phi)\right]\right)^{1.6}$$

Step 4: s0 -> Z

I

(3):

